Part Number Hot Search : 
PV360Z8Q BZV55B ELM33400 RA45H BAT54N3 TMP87 RF630 NDB610AE
Product Description
Full Text Search
 

To Download IRGB4056DPBF-15 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  insulated gate bipolar transistor with ultrafast soft recovery diode irgb4056dpbf 1 www.irf.com 04/11/08 e g n-channel c v ces = 600v i c = 12a, t c = 100c t sc 5s, t j(max) = 175c v ce(on) typ. = 1.55v features  low v ce (on) trench igbt technology  low switching losses  maximum junction temperature 175 c  5 s short circuit soa  square rbsoa  100% of the parts tested for 4x rated current (i lm )  positive v ce (on) temperature co-efficient  ultra fast soft recovery co-pak diode  tight parameter distribution  lead free package benefits  high efficiency in a wide range of applications  suitable for a wide range of switching frequencies due to low v ce (on) and low switching losses  rugged transient performance for increased reliability  excellent current sharing in parallel operation  low emi gc e gate collector emitter to-220ab g c e c absolute maximum ratings parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 24 i c @ t c = 100c continuous collector current 12 i cm pulse collector current 48 i lm clamped inductive load current 48 a i f @ t c = 25c diode continous forward current 24 i f @ t c = 100c diode continous forward current 12 i fm diode maximum forward current  48 v ge continuous gate-to-emitter voltage 20 v transient gate-to-emitter voltage 30 p d @ t c = 25c maximum power dissipation 140 w p d @ t c = 100c maximum power dissipation 70 t j operating junction and -55 to +175 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw 10 lbfin (1.1 nm) thermal resistance parameter min. typ. max. units r jc (igbt) thermal resistance junction-to-case-(each igbt) ??? ??? 1.07 c/w r jc (diode) thermal resistance junction-to-case-(each diode) ??? ??? 3.66 r cs thermal resistance, case-to-sink (flat, greased surface) ??? 0.50 ??? r ja thermal resistance, junction-to-ambient (typical socket mount) ??? 80 ??? 
irgb4056dpbf 2 www.irf.com notes:  v cc = 80% (v ces ), v ge = 20v, l = 100h, r g = 22 ? .  this is only applied to to-220ab package.  pulse width limited by max. junction temperature.  refer to an-1086 for guidelines for measuring v (br)ces safely. electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions ref.fig v (br)ces collector-to-emitter breakdown voltage 600??v v ge = 0v, i c = 100a ct6 ? v (br)ces / ? t j temperature coeff. of breakdown voltage ?0.30?v/c v ge = 0v, i c = 1ma (25c-175c) ct6 ?1.551.85 i c = 12a, v ge = 15v, t j = 25c 5,6,7 v ce(on) collector-to-emitter saturation voltage ? 1.90 ? v i c = 12a, v ge = 15v, t j = 150c 9,10,11 ?1.97? i c = 12a, v ge = 15v, t j = 175c v ge(th) gate threshold voltage 4.0 ? 6.5 v v ce = v ge , i c = 350a 9, 10, ? v ge(th) / ? tj threshold voltage temp. coefficient ? -18 ? mv/c v ce = v ge , i c = 1.0ma (25c - 175c) 11, 12 gfe forward transconductance ? 7.7 ? s v ce = 50v, i c = 12a, pw = 80s i ces collector-to-emitter leakage current ? 2.0 25 a v ge = 0v, v ce = 600v ?475? v ge = 0v, v ce = 600v, t j = 175c v fm diode forward voltage drop ? 2.10 3.10 v i f = 12a 8 ?1.61? i f = 12a, t j = 175c i ges gate-to-emitter leakage current ? ? 100 na v ge = 20v switching characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units ref.fig q g total gate charge (turn-on) ? 25 38 i c = 12a 24 q ge gate-to-emitter charge (turn-on) ? 7.0 11 nc v ge = 15v ct1 q gc gate-to-collector charge (turn-on) ? 11 16 v cc = 400v e on turn-on switching loss ? 75 118 i c = 12a, v cc = 400v, v ge = 15v ct4 e off turn-off switching loss ? 225 273 j r g = 22 ? , l = 200h, l s = 150nh, t j = 25c e total total switching loss ? 300 391 energy losses include tail & diode reverse recovery t d(on) turn-on delay time ? 31 40 i c = 12a, v cc = 400v, v ge = 15v ct4 t r rise time ? 17 24 ns r g = 22 ? , l = 200h, l s = 150nh, t j = 25c t d(off) turn-off delay time ? 83 94 t f fall time ? 24 31 e on turn-on switching loss ? 185 ? i c = 12a, v cc = 400v, v ge =15v 13, 15 e off turn-off switching loss ? 355 ? j r g =22 ? , l=100h, l s =150nh, t j = 175c  ct4 e total total switching loss ? 540 ? energy losses include tail & diode reverse recovery wf1, wf2 t d(on) turn-on delay time ? 30 ? i c = 12a, v cc = 400v, v ge = 15v 14, 16 t r rise time ? 18 ? ns r g = 22 ? , l = 200h, l s = 150nh ct4 t d(off) turn-off delay time ? 102 ? t j = 175c wf1 t f fall time ? 41 ? wf2 c ies input capacitance ? 765 ? pf v ge = 0v 23 c oes output capacitance ? 52 ? v cc = 30v c res reverse transfer capacitance ? 23 ? f = 1.0mhz t j = 175c, i c = 48a 4 rbsoa reverse bias safe operating area full square v cc = 480v, vp =600v ct2 rg = 22 ? , v ge = +15v to 0v scsoa short circuit safe operating area 5 ? ? s v cc = 400v, vp =600v 22, ct3 rg = 22 ? , v ge = +15v to 0v wf4 erec reverse recovery energy of the diode ? 280 ? j t j = 175c 17, 18, 19 t rr diode reverse recovery time ? 68 ? ns v cc = 400v, i f = 12a 20, 21 i rr peak reverse recovery current ? 19 ? a v ge = 15v, rg = 22 ? , l =200h, l s = 150nh wf3 conditions
irgb4056dpbf www.irf.com 3 fig. 1 - maximum dc collector current vs. case temperature fig. 2 - power dissipation vs. case temperature fig. 3 - forward soa t c = 25c, t j 175c; v ge =15v fig. 4 - reverse bias soa t j = 175c; v ge =15v fig. 5 - typ. igbt output characteristics t j = -40c; tp = 80s fig. 6 - typ. igbt output characteristics t j = 25c; tp = 80s 0 20 40 60 80 100 120 140 160 180 t c (c) 0 5 10 15 20 25 i c ( a ) 0 20 40 60 80 100 120 140 160 180 t c (c) 0 25 50 75 100 125 150 p t o t ( w ) 10 100 1000 v ce (v) 1 10 100 i c ( a ) 0 1 2 3 4 5 6 7 8 v ce (v) 0 5 10 15 20 25 30 35 40 45 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v 0 1 2 3 4 5 6 7 8 v ce (v) 0 5 10 15 20 25 30 35 40 45 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v 1 10 100 1000 10000 v ce (v) 0.1 1 10 100 i c ( a ) 1msec 10sec 100sec tc = 25c tj = 175c single pulse dc
irgb4056dpbf 4 www.irf.com fig. 7 - typ. igbt output characteristics t j = 175c; tp = 80s fig. 8 - typ. diode forward characteristics tp = 80s fig. 10 - typical v ce vs. v ge t j = 25c fig. 11 - typical v ce vs. v ge t j = 175c fig. 12 - typ. transfer characteristics v ce = 50v; tp = 10s fig. 9 - typical v ce vs. v ge t j = -40c 0 1 2 3 4 5 6 7 8 v ce (v) 0 5 10 15 20 25 30 35 40 45 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v 0.0 1.0 2.0 3.0 4.0 v f (v) 0 10 20 30 40 50 60 70 80 i f ( a ) -40c 25c 175c 5 101520 v ge (v) 0 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 6.0a i ce = 12a i ce = 24a 5 101520 v ge (v) 0 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 6.0a i ce = 12a i ce = 24a 5 101520 v ge (v) 0 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 6.0a i ce = 12a i ce = 24a 0 5 10 15 v ge (v) 0 10 20 30 40 50 i c e ( a ) t j = 25c t j = 175c
irgb4056dpbf www.irf.com 5 fig. 13 - typ. energy loss vs. i c t j = 175c; l = 200h; v ce = 400v, r g = 22 ? ; v ge = 15v fig. 14 - typ. switching time vs. i c t j = 175c; l = 200h; v ce = 400v, r g = 22 ? ; v ge = 15v fig. 15 - typ. energy loss vs. r g t j = 175c; l = 200h; v ce = 400v, i ce = 12a; v ge = 15v fig. 16 - typ. switching time vs. r g t j = 175c; l = 200h; v ce = 400v, i ce = 12a; v ge = 15v fig. 17 - typ. diode i rr vs. i f t j = 175c fig. 18 - typ. diode i rr vs. r g t j = 175c 0 102030 i c (a) 0 100 200 300 400 500 600 700 800 e n e r g y ( j ) e off e on 5 10 15 20 25 i c (a) 1 10 100 1000 s w i c h i n g t i m e ( n s ) t r td off t f td on 0 25 50 75 100 125 rg ( ? ) 50 100 150 200 250 300 350 400 450 500 e n e r g y ( j ) e off e on 0 25 50 75 100 125 r g ( ? ) 10 100 1000 s w i c h i n g t i m e ( n s ) t r td off t f td on 0 10 20 30 i f (a) 0 5 10 15 20 25 i r r ( a ) r g = 10 ? r g = 22 ? r g = 47 ? r g = 100 ? 0 25 50 75 100 125 r g ( ?) 5 10 15 20 25 i r r ( a )
irgb4056dpbf 6 www.irf.com fig. 19 - typ. diode i rr vs. di f /dt v cc = 400v; v ge = 15v; i f = 12a; t j = 175c fig. 20 - typ. diode q rr vs. di f /dt v cc = 400v; v ge = 15v; t j = 175c fig. 23 - typ. capacitance vs. v ce v ge = 0v; f = 1mhz fig. 24 - typical gate charge vs. v ge i ce = 12a; l = 600h fig. 21 - typ. diode e rr vs. i f t j = 175c fig. 22 - v ge vs. short circuit time v cc = 400v; t c = 25c 0 500 1000 1500 di f /dt (a/s) 0 5 10 15 20 25 i r r ( a ) 0 500 1000 1500 di f /dt (a/s) 200 400 600 800 1000 1200 1400 q r r ( c ) 10 ? 22 ? 100 ? 47 ? 12a 24a 6.0a 0 10 20 30 i f (a) 0 50 100 150 200 250 300 350 400 e n e r g y ( j ) r g = 10 ? r g = 22 ? r g = 47 ? r g = 100 ? 8 1012141618 v ge (v) 0 2 4 6 8 10 12 14 16 18 20 t i m e ( s ) 20 30 40 50 60 70 80 90 100 110 120 c u r r e n t ( a ) 0 20 40 60 80 100 v ce (v) 10 100 1000 10000 c a p a c i t a n c e ( p f ) cies coes cres 0 5 10 15 20 25 30 q g , total gate charge (nc) 0 2 4 6 8 10 12 14 16 v g e , g a t e - t o - e m i t t e r v o l t a g e ( v ) v ces = 300v v ces = 400v
irgb4056dpbf www.irf.com 7 fig. 26. maximum transient thermal impedance, junction-to-case (diode) fig 25. maximum transient thermal impedance, junction-to-case (igbt) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.821094 0.000233 1.913817 0.001894 0.926641 0.014711 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.358 0.000171 0.424 0.001361 0.287 0.009475 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri
irgb4056dpbf 8 www.irf.com 1k vc c dut 0 l l rg 80 v dut 480v dc 4x dut 360v l rg vcc diode clamp / du t du t / driver - 5v rg vcc dut r = v cc i cm fig.c.t.1 - gate charge circuit (turn-off) fig.c.t.2 - rbsoa circuit fig.c.t.3 - s.c. soa circuit fig.c.t.4 - switching loss circuit fig.c.t.5 - resistive load circuit c f orce 400h g f orce dut d1 10k c sen se 0.0075 e sense e force fig.c.t.6 - bvces filter circuit
irgb4056dpbf www.irf.com 9 fig. wf3 - typ. diode recovery waveform @ t j = 175c using fig. ct.4 fig. wf1 - typ. turn-off loss waveform @ t j = 175c using fig. ct.4 fig. wf2 - typ. turn-on loss waveform @ t j = 175c using fig. ct.4 fig. wf4 - typ. s.c. waveform @ t j = 25c using fig. ct.3 -100 0 100 200 300 400 500 -0.50 0.00 0.50 1.00 1.50 2.00 time(s) v ce (v) -5 0 5 10 15 20 2 5 e off loss 5% v ce 5% i ce 90% i ce tf -100 0 100 200 300 400 50 0 11.70 11.80 11.90 12.00 12.10 time (s) v ce (v) -10 0 10 20 30 40 5 0 e on test c 90% test 10% test 5% v ce tr -25 -20 -15 -10 -5 0 5 10 15 20 25 -0.05 0.05 0.15 time (s) i rr (a) peak i rr q rr t rr 10% pea k i rr -100 0 100 200 300 400 500 -5.00 0.00 5.00 10.00 time (s) v ce (v) -50 0 50 100 150 200 250 i ce (a) v c e i ce
irgb4056dpbf 10 www.irf.com ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 04/08 data and specifications subject to change without notice. this product has been designed and qualified for industrial market. qualification standards can be found on ir?s web site. 

 
 

   
      
   
     !"!# $%$&'   ()  (**
+,    - (    () . ) /,   *0
 to-220ab package is not recommended for surface mount application.  
       
 


▲Up To Search▲   

 
Price & Availability of IRGB4056DPBF-15

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X